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Model Objectives Fixed case Prefix independent objectives

Strategy synthesis
Finding good controllers for systems interacting with an environment

• Game setting: ensure a specified behavior against all possible strategies of
the environment

• Markov Decision Process (MDP) setting:

– environment stochastic
– ensure a specified behavior with a sufficient probability

• Classical objectives reason about infinite runs in their limit

• Window objectives in games [CDRR15, BHR16]: ensure a good behavior in a
parametrized time frame all along the run

  conservative approximations of classical objectives

Aim of this talk
Introducing window objectives in the stochastic context
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Model Objectives Fixed case Prefix independent objectives

Example

• Parity: asks theminimum priority seen infinitely often to be even

  canonical way of encoding ω-regular properties

  controller winning
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0

• Window parity: asks the minimum priority seen within at most λ > 0 time
steps to be even from each position of the infinite run

• Every time s1 is visited, there is a probability > 0 of not seeing the priority
0 before λ steps ( 1

2λ−1 )

  probability zero
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Model Objectives Fixed case Prefix independent objectives

Outline

1. Model

2. Objectives
2.1 Classical long-run objectives
2.2 Window objectives
2.3 Direct case
2.4 Prefix independent variants

2.5 Decision problem
3. Fixed case

3.1 Reductions
3.2 Direct fixed window

4. Prefix independent objectives
4.1 The case of end-components
4.2 Fixed and Bounded window
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Model Objectives Fixed case Prefix independent objectives

Markov Decision Process (MDP)

a

b

s

s 0∆(s;¸)(s 0)

w(a)p(s)

p(s 0)

An MDPℳ = (S,A,Δ) is a tuple such that

• S is the set of states of the system

• A is the set of actions of the
system

• Δ : S× A→ 𝒟(S) is the
probability transition function

• w : A→ Z is a weight function

• p : S→ {0,1, . . . ,d} is a priority
function (d ≤ |S| + 1 w.l.o.g.)
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Model Objectives Fixed case Prefix independent objectives

Runs and strategies

a0; −1

a1; 2

a2; 5

a0;−1

s0 s1

s2
1

2

1

2

• Runs: ρ = s0
a0−→ s1

a1−→ s2 . . . sn
an−→ · · · ∈ Runs(ℳ) such that

Δ(si,ai)(si+1) > 0

• Strategy: σ chooses at each step an action

– pure finite-memory strategies: choose actions according to a finite
amount of information gathered in the past

– pure memoryless strategies: σ : S→ A
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Runs and strategies
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• Fix a strategy σ

• Induce a discrete-time Markov chain: fully stochastic processℳσ

  Event: E ⊆ Runsσ(ℳ)
  Pσℳ[E]: probability measure of the event E
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Outline

1. Model

2. Objectives
2.1 Classical long-run objectives
2.2 Window objectives
2.3 Direct case
2.4 Prefix independent variants

2.5 Decision problem
3. Fixed case

3.1 Reductions
3.2 Direct fixed window

4. Prefix independent objectives
4.1 The case of end-components
4.2 Fixed and Bounded window

6/26



Model Objectives Fixed case Prefix independent objectives

Classical long-run objectives

Long-run objectives

• Parity = {ρ ∈ Runs(ℳ) |mins∈inf(ρ) p(s) = 0 (mod 2)}

• MeanPayoff = {ρ ∈ Runs(ℳ) |MP(ρ) ≥ 0}

– MP(ρ = s0
a0−→ s1

a1−→ . . . ) = lim infn→∞
1
n ·

∑︀n
i=0w(ai)

– Example: ∀n ∈ N,
MP

(︀
(s2

a0−→)n(s0
a0−→ s1

a1−→)ω
)︀
=MP

(︀
(s0

a0−→ s1
a1−→)ω

)︀
= 1

2

– Pσℳ,s2
[MeanPayoff] = 1

a0; −1

a1; 2

a2; 5

a0;−1

s0 s1

s2
1

2

1

2
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Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives
• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

WindowMean-Payoff

a0; −1

a1; 2

a2; 5

a0;−1

s0 s1

s2
1

2

1

2

• Positive sum in at most λ = 3 steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0;−1 a0;−1 a1; 2 a0;−1 a1; 2

−1

0

−2

  Good window of size λ = 3

  ρ ∈ GWmp(3)
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Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity
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a1

a2

a0

s0 s1
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2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

0

  Good window of size λ = 3

  ρ ∈ GWpar(3)

9/26



Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity

a0

a1

a2

a0

s0 s1

s2
1

2

1

2

1

2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

0

  Good window of size λ = 3

  ρ ∈ GWpar(3)

9/26



Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity

a0

a1

a2

a0

s0 s1

s2
1

2

1

2

1

2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

1

  Good window of size λ = 3

  ρ ∈ GWpar(3)

9/26



Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity

a0

a1

a2

a0

s0 s1

s2
1

2

1

2

1

2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

1

  Good window of size λ = 3

  ρ ∈ GWpar(3)

9/26



Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity

a0

a1

a2

a0

s0 s1

s2
1

2

1

2

1

2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

0

  Good window of size λ = 3

  ρ ∈ GWpar(3)

9/26



Model Objectives Fixed case Prefix independent objectives

Window objectives

Window Objectives

• Runs that exhibit good behaviors within a configurable time frame

• Strengthen traditional objectives (correct behaviors at the limit)

  Make use of the window formalism to reason about behaviors in a given
time bound λ > 0.

GW(λ) = {ρ ∈ Runs(ℳ) | good behavior in at most λ steps from s0}

Window Parity

a0

a1

a2

a0

s0 s1

s2
1

2

1

2

1

2 0

• Minimum priority is even in at most λ = 3
steps?

• Window of maximal size λ = 3

 = s2 s0 s1 s0 s1
: : :

a0 a0 a1 a0 a1

1 2 0 1 0

min priority

| {z }

0

  Good window of size λ = 3

  ρ ∈ GWpar(3)
9/26



Model Objectives Fixed case Prefix independent objectives

Direct case

Window Objectives: Direct Fixed Window
• Fix a window size λ > 0

• Direct Fixed Window objective: DFW(λ) ≡ �GW(λ)

• Good Window of maximal size λ sliding along the run

ρ = s2
a0−→ (s0

a0−→ s1
a1−→)ω ∈ DFW(3)

 = s2 s0 s1 s0 s1
: : :

a0;−1 a0;−1 a1; 2 a0;−1 a1; 2

−1

0

−2

s0 s1

a0;−1 a1; 2

1

2

  Inductive property
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Prefix independent variants

Window Objectives: prefix independence

• Window objectives at the limit

• Fixed Window objective: FW(λ) ≡ ◊DFW(λ) ≡ ◊�GW(λ)

• Bounded Window objective: BW ≡ ∃λ > 0, FW(λ)

ρ = (s2
a0−→)+(s0

a0−→ s1
a1−→)ω ∈ FW(3) ∩ BW
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a1; 2

a2; 5

a0;−1

s0 s1

s2
1
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2

 = s2 s2 s2 s0 s1
: : :

a0;−1 a0;−1 a0;−1 a1; 2

−1

0

−2

s0 s1

a0;−1 a1; 2

1

2

: : :
a0;−1 a0;−1
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Model Objectives Fixed case Prefix independent objectives

Decision problem

Threshold Probability Problem

Given

• anMDPℳ with state space S,

• amaximal window size λ > 0,

• an initial state s ∈ S,

• a window objectiveO ∈ {DFW(λ), FW(λ),BW} for
mean-payoff or parity and

• a probability threshold α ∈ [0,1] ∩Q,

decide if
∃?σ Pσ

ℳ,s[O] ≥ α
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Decision problem

Window Games

s ta b

1 0

∃?σ©∀σ�, ρ = Outcome(s, σ©, σ�) ∈ DFW(λ)
• Existence of a uniform bound λ? on the maximal window size

• © is loosing for all λ since � can choose a→ s

s t

1

2

1

2

1 0

a

b

∃?σ, Pσs[DFW(λ)] ≥ α

• no uniform bound on the maximal window size

• For λ > 1, Ps[DFW(λ)] = 1− 1
2λ−1

• Ps[DFW(3)] = Δ(s,a)(t) + Δ(s,a)(s′) · Δ(s,a)(t) = 1
2 +

1
4 =

3
4
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Decision problem

Results overview

Markov Decision Processes
parity mean-payoff

complexity memory complexity memory

DFW
P-c.

polynomial
EXPTIME/PSPACE-h. pseudo-polynomial

FW P-c. polynomial
BW memoryless NP ∩ coNP memoryless

Games [CDRR15, BHR16]
parity mean-payoff

complexity memory (𝒫1) complexity memory (𝒫1)

DFW
P-c.

polynomial P-c. polynomial
FW
BW memoryless NP ∩ coNP memoryless
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Outline

1. Model

2. Objectives
2.1 Classical long-run objectives
2.2 Window objectives
2.3 Direct case
2.4 Prefix independent variants

2.5 Decision problem
3. Fixed case

3.1 Reductions
3.2 Direct fixed window

4. Prefix independent objectives
4.1 The case of end-components
4.2 Fixed and Bounded window
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Reductions

Strategies: memory requirements
• Pure finite memory strategies are sufficient

• Main tools: natural reduction fromDFW to safety and FW to co-Büchi

  unfolding based on the maximal window size λ

a0; −1

a1; 2

a0;−1

s0 s1

s2
1

2

1

2

s2; 0; 0

s0; 1;−1 s1; 1;−1s0; 0; 0

s2; 1;−1

s2; 2;−2

s0; 2;−2

s2;?

s0;?

s1;?
a0;−1

a0;−1

a0;−1

a0;−1

a0;−1

a0;−1

a1; 2
a1; 2

s2;?

s0;?

s1;?

s1; 2;−2
a0;−1 a1; 21

2

1

2

1

2

1

2

1

2

1

2

bad windows

• Idea: incorporate weights (resp. priorities) as well as the current number
of steps in the state space of the MDP

• Mean-payoff: S× {0,1, . . . , λ} × {−λ ·W, . . . ,0}

• Parity: S× {0,1, . . . , λ} × {0,1, . . . ,d}
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Direct fixed window

Complexity and memory requirements

DFW
Mean-Payoff Parity

Threshold probability problem

• EXPTIME algorithm

• Pseudo-polynomial-memory
optimal strategies

• PSPACE-hard [HK15]

• Pseudo-polynomial-memory
strategies necessary

• P algorithm

• Polynomial-memory optimal
strategies

• P-hard [Bee80, Imm81]

• Polynomial-memory strategies
necessary
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The case of end-components

End-component
Letℳ be an MDP, an end-component (EC) is a strongly connected sub-MDP 𝒞 of
ℳ formed by states and actions allowing to never leave 𝒞

• For any strategy σ, all runs ρ compatible with σ end up in an EC with
probability one

1

2

1

2

3

4

1

4
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Model Objectives Fixed case Prefix independent objectives

The case of end-components

End-component
Letℳ be an MDP, an end-component (EC) is a strongly connected sub-MDP 𝒞 of
ℳ formed by states and actions allowing to never leave 𝒞

• The number of ECs may be exponential in the size ofℳ

• An EC may have sub-ECs

• the union of two ECs with non-empty intersection is an EC

=⇒ Maximal end-component (MEC) = ECs that cannot be extended

  MEC(ℳ) computable in polynomial time
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Model Objectives Fixed case Prefix independent objectives

The case of end-components

MEC classification and Zero-one Law

• Prefix independence MECs
analysis

• Main result: MEC classification

• strong link between ECs and 2
player games

  2 types of MECs: 3 and 7

Given an objectiveO ∈ {FW(λ),BW}

3 ∀s of 𝒞 ∃σ, Pσ𝒞,s[O] = 1

7 ∀s of 𝒞 ∀σ, Pσ𝒞,s[O] = 0
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Model Objectives Fixed case Prefix independent objectives

The case of end-components

Safe EC
An EC 𝒞 of state space S𝒞 is λ-safe iff ∀s ∈ S𝒞 ,
∃σ ∀ρ ∈ Runsσ(𝒞), ρ ∈ DFW(λ)

  Boils down to interpreting 𝒞 as a 2 player game

• ∃?𝒞, λ-safe EC inside a super-EC 𝒞?

→ compute the winning set𝒲dfw of theDFW game version of 𝒞?

– 𝒲dfw 6= ∅ =⇒ ∃ λ-safe EC 𝒞 inside 𝒞?
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Model Objectives Fixed case Prefix independent objectives

The case of end-components

Good EC
An EC 𝒞 is

3 λ-good for λ > 0 if it contains a sub-EC 𝒞′ which is λ-safe

3 BW-good if it contains a sub-EC 𝒞′ which is λ-safe for some λ > 0

good EC 3 • In all EC 𝒞, ∃σ𝒞visit allowing to visit
with probability one all states of 𝒞

=⇒ P
σ𝒞
visit

𝒞 (◊𝒞safe) = 1

• σ3 = combine σ𝒞visit and σsafe

=⇒ P
σ3

𝒞 [O] = 1 for
O ∈ {FW(λ),BW}
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Model Objectives Fixed case Prefix independent objectives

The case of end-components

Bad EC ?
• /∃ safe sub-EC inside the 2PG version of 𝒞 ?

• Fix any finite-memory strategy σ inside 𝒞
• The set of states and actions seen infinitely often form sub-ECs 𝒞sub with

probability one

• In these sub-ECs 𝒞sub, ∃ρ 6∈ DFW(λ) (otherwise 𝒞sub is safe)

• extract a bad prefix ρ7 (=bad window) in ρ

• ρ7 is repeated infinitely often with probability one in 𝒞sub

• ∀𝒞sub, Pσ𝒞sub [DFW(λ)] = 0 =⇒ Pσ𝒞[O] = 0 O ∈ {FW(λ),BW}

Bad EC
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The case of end-components

Summary: complexity and strategies
GivenO ∈ {FW(λ),BW}, 2 types of MECs: 3 and 7

3 ∀s of 𝒞 ∃σ, Pσ𝒞,s[O] = 1 7 ∀s of 𝒞 ∀σ, Pσ𝒞,s[O] = 0

MEC classification
Mean-Payoff Parity

Fixed window (FW)

• in P (2PG) • in P (2PG)

• pure polynomial finite-memory strategy σ3 := σ𝒞visit + σsafe

Bounded window (BW)

• in NP ∩ coNP (2PG) • in P (2PG)

• pure memoryless strategy σ3 := σ𝒞visit + σsafe
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Model Objectives Fixed case Prefix independent objectives

Fixed and Bounded window

Optimal strategies for FW and BW

σmax
◊3

= argmax
σ

Pσ[◊3]

σ? := σmax
◊3⏟  ⏞  

until reaching 3

+ σ3⏟ ⏞ 
in 3

P
max[3 3]

P
max[3 3]
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Model Objectives Fixed case Prefix independent objectives

Summary
Back to the results overview

Markov Decision Processes
parity mean-payoff

complexity memory complexity memory

DFW
P-c.

polynomial
EXPTIME/PSPACE-h. pseudo-polynomial

FW P-c. polynomial
BW memoryless NP ∩ coNP memoryless
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Extensions
• Expected window size: strategies maintaining the best time bounds possible

in their local environment

– minσ Eσℳ[λ] =minσ
∑︀∞

λ>0 λ · P
σ
ℳ[FW(λ) \ FW(λ− 1)]

– Refine the classification process: identify best window size λ in each MEC by
binary search

– Contract each good MEC and assign λ as entering weight

• Multi window objectives:

– DFW: extend the unfolding for multiple dimensions
– MEC classification: games with multiple window objectives

• Tool support: implementation in STORM

+ DFW, FW and BW objectives for parity and mean-payoff
+ Efficient unfoldings forDFW
+ Window games for parity [BHR16] and mean-payoff [CDRR15]
+ Total payoff games: efficient pseudo-polynomial time algorithm with value

iteration [BGHM14]
+ Weak parity games [CHH09]
+ Rich MEC classification methods
+ Strategy synthesis (export in .dot format)
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