Life is Random, Time is Not

Markov Decision Processes with Window Objectives

......

Thomas Brihaye (UMONS) Youssouf Oualhadj (LACL – UPEC) Florent Delgrange (UMONS & RWTH) Mickael Randour (F.R.S.-FNRS & UMONS)

.....

30th International Conference on Concurrency Theory August 27, 2019

Strategy synthesis

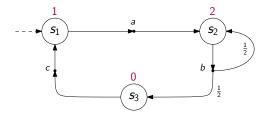
Finding good controllers for systems interacting with an environment

- Game setting: ensure a specified behavior against all possible strategies of the environment
- Markov Decision Process (MDP) setting:
 - environment stochastic
 - ensure a specified behavior with a sufficient probability
- Classical objectives reason about infinite runs in their limit
- Window objectives in games [CDRR15, BHR16]: ensure a good behavior in a parametrized time frame all along the run
 - ---- conservative approximations of classical objectives

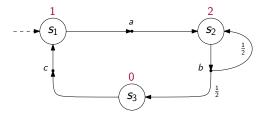
Aim of this talk

Introducing window objectives in the stochastic context

- Parity: asks the minimum priority seen infinitely often to be even
 - \rightsquigarrow canonical way of encoding ω -regular properties

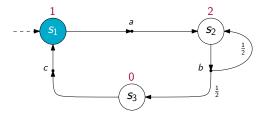


- Parity: asks the minimum priority seen infinitely often to be even
 - \rightsquigarrow canonical way of encoding ω -regular properties



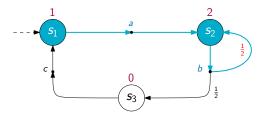
 Window parity: asks the minimum priority seen within at most λ > 0 time steps to be even from each position of the infinite run

- Parity: asks the minimum priority seen infinitely often to be even
 - \rightsquigarrow canonical way of encoding ω -regular properties



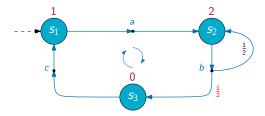
- Window parity: asks the minimum priority seen within at most λ > 0 time steps to be even from each position of the infinite run
- Every time S_1 is visited, there is a probability > 0 of not seeing the priority 0 before λ steps $(\frac{1}{2^{\lambda-1}})$

- Parity: asks the minimum priority seen infinitely often to be even
 - \rightsquigarrow canonical way of encoding ω -regular properties



- Window parity: asks the minimum priority seen within at most λ > 0 time steps to be even from each position of the infinite run
- Every time *s*₁ is visited, there is a probability > 0 of not seeing the priority 0 before λ steps (¹/_{2^{λ-1}})

- Parity: asks the minimum priority seen infinitely often to be even
 - \rightsquigarrow canonical way of encoding ω -regular properties



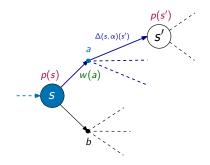
- Window parity: asks the minimum priority seen within at most λ > 0 time steps to be even from each position of the infinite run
- Every time S₁ is visited, there is a probability > 0 of not seeing the priority 0 before λ steps (¹/_{2^{λ-1}})
- 🛶 probability zero

Outline

- 1. Model
- 2. Objectives
 - 2.1 Classical long-run objectives
 - 2.2 Window objectives
 - 2.3 Direct case
 - 2.4 Prefix independent variants

- 2.5 Decision problem
- 3. Fixed case
 - 3.1 Reductions
 - 3.2 Direct fixed window
- 4. Prefix independent objectives
 - 4.1 The case of end-components
 - 4.2 Fixed and Bounded window

Markov Decision Process (MDP)

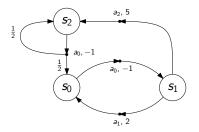


An MDP $\mathcal{M} = (S, A, \Delta)$ is a tuple such that

- S is the set of states of the system
- A is the set of actions of the system
- ∆ : S × A → D(S) is the probability transition function

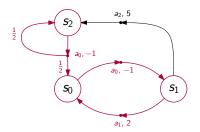
- $W: A \rightarrow \mathbb{Z}$ is a weight function
- *p*: *S* → {0, 1, ..., *d*} is a priority function (*d* ≤ |*S*| + 1 w.l.o.g.)

Runs and strategies



- Runs: $\rho = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \dots s_n \xrightarrow{a_n} \dots \in \operatorname{Runs}(\mathcal{M})$ such that $\Delta(s_i, a_i)(s_{i+1}) > 0$
- Strategy: σ chooses at each step an action
 - pure finite-memory strategies: choose actions according to a finite amount of information gathered in the past
 - pure memoryless strategies: $\sigma : S \rightarrow A$

Runs and strategies



- Fix a strategy σ
- Induce a discrete-time Markov chain: fully stochastic process M^o
 - \rightarrow Event: $E \subseteq \text{Runs}^{\sigma}(\mathcal{M})$
 - $\rightarrow \mathbb{P}^{\sigma}_{\mathcal{M}}[E]$: probability measure of the event E

Outline

1. Model

2. Objectives

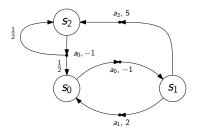
- 2.1 Classical long-run objectives
- 2.2 Window objectives
- 2.3 Direct case
- 2.4 Prefix independent variants

2.5 Decision problem

- 3. Fixed case
 - 3.1 Reductions
 - 3.2 Direct fixed window
- 4. Prefix independent objectives
 - 4.1 The case of end-components
 - 4.2 Fixed and Bounded window

Long-run objectives

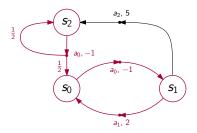
- Parity = { $\rho \in \text{Runs}(\mathcal{M}) \mid \min_{s \in \inf(\rho)} p(s) = 0 \pmod{2}$ }
- MeanPayoff = { $\rho \in \text{Runs}(\mathcal{M}) \mid \text{MP}(\rho) \ge 0$ }
 - MP($\rho = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \dots$) = lim inf_{$n \to \infty$} $\frac{1}{n} \cdot \sum_{i=0}^n w(a_i)$
 - Example: $\forall n \in \mathbb{N}$, $MP((s_2 \xrightarrow{a_0})^n (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^\omega) = MP((s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^\omega) = \frac{1}{2}$



Long-run objectives

- Parity = { $\rho \in \text{Runs}(\mathcal{M}) \mid \min_{s \in \inf(\rho)} p(s) = 0 \pmod{2}$ }
- MeanPayoff = { $\rho \in \text{Runs}(\mathcal{M}) \mid \text{MP}(\rho) \ge 0$ }
 - MP($\rho = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \dots$) = lim inf_{$n \to \infty$} $\frac{1}{n} \cdot \sum_{i=0}^n w(a_i)$
 - **Example:** $\forall n \in \mathbb{N}$, $MP((s_2 \xrightarrow{a_0})^n (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^\omega) = MP((s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^\omega) = \frac{1}{2}$

- $\mathbb{P}^{\sigma}_{\mathcal{M},s_2}$ [MeanPayoff] = 1

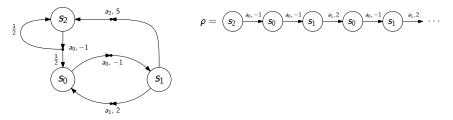


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- → Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff

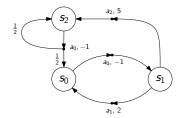


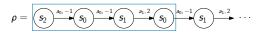
- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- → Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff



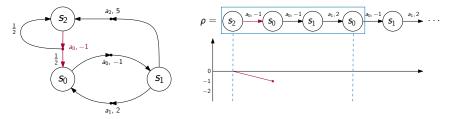


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff

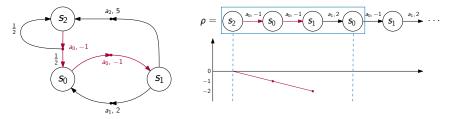


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff

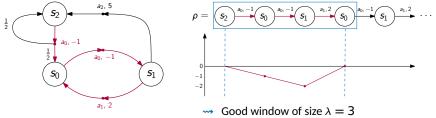


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff

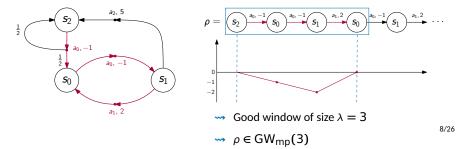


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

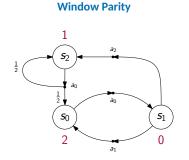
• Positive sum in at most $\lambda = 3$ steps?

Window Mean-Payoff

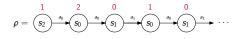


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{\rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0\}$



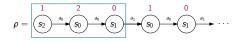
 Minimum priority is even in at most λ = 3 steps?

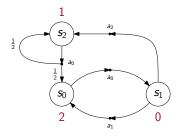


- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- → Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$

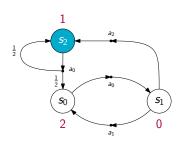
 Minimum priority is even in at most λ = 3 steps?





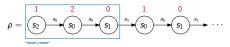
- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$



Window Parity

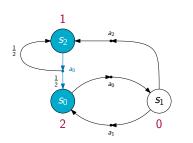
- Minimum priority is even in at most λ = 3 steps?
- Window of maximal size $\lambda = 3$



min priority

- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

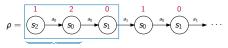
 $GW(\lambda) = \{\rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0\}$



Window Parity

- Minimum priority is even in at most λ = 3 steps?
- Window of maximal size $\lambda = 3$

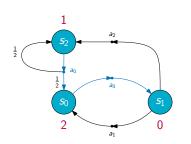
1



min priority

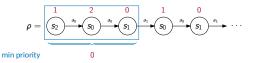
- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$



Window Parity

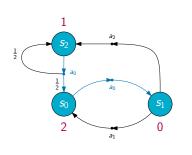
- Minimum priority is even in at most λ = 3 steps?
- Window of maximal size $\lambda = 3$



 \rightarrow Good window of size $\lambda = 3$

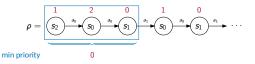
- Runs that exhibit good behaviors within a configurable time frame
- Strengthen traditional objectives (correct behaviors at the limit)
- ••• Make use of the window formalism to reason about behaviors in a given time bound $\lambda > 0$.

 $GW(\lambda) = \{ \rho \in Runs(\mathcal{M}) \mid good behavior in at most \lambda steps from s_0 \}$



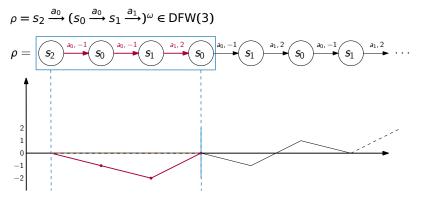
Window Parity

- Minimum priority is even in at most λ = 3 steps?
- Window of maximal size $\lambda = 3$



- \rightarrow Good window of size $\lambda = 3$
- $\rightarrow \rho \in GW_{par}(3)$

- Fix a window size $\lambda > 0$
- Direct Fixed Window objective: $DFW(\lambda) \equiv \Box GW(\lambda)$
- Good Window of maximal size λ sliding along the run

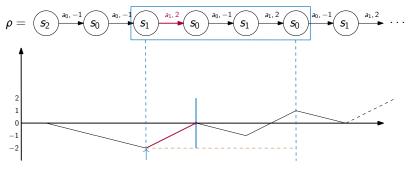


- Fix a window size $\lambda > 0$
- Direct Fixed Window objective: $DFW(\lambda) \equiv \Box GW(\lambda)$
- Good Window of maximal size λ sliding along the run

 $\rho = s_2 \xrightarrow{a_0} (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^{\omega} \in \mathsf{DFW}(3)$ *a*₁, 2 a₀, – a₀, -1 a1, 2 a₀, -1 a1, 2 $a_0, -1$ $\rho =$ S_2 **S**0 S_1 **S**0 S_1 **S**0 S_1 2 0 $^{-1}$ -2

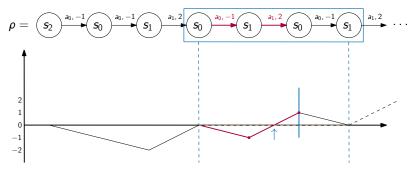
- Fix a window size $\lambda > 0$
- Direct Fixed Window objective: $DFW(\lambda) \equiv \Box GW(\lambda)$
- Good Window of maximal size λ sliding along the run

 $\rho = s_2 \xrightarrow{a_0} (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^{\omega} \in \mathsf{DFW}(3)$



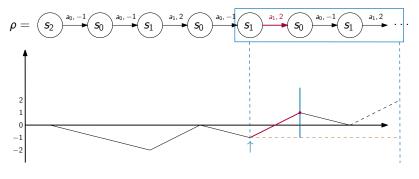
- Fix a window size $\lambda > 0$
- Direct Fixed Window objective: $DFW(\lambda) \equiv \Box GW(\lambda)$
- Good Window of maximal size λ sliding along the run

 $\rho = s_2 \xrightarrow{a_0} (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^{\omega} \in \mathsf{DFW}(3)$



- Fix a window size $\lambda > 0$
- Direct Fixed Window objective: $DFW(\lambda) \equiv \Box GW(\lambda)$
- Good Window of maximal size λ sliding along the run

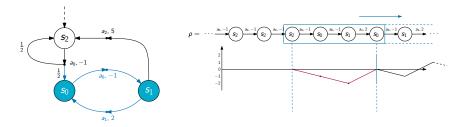
 $\rho = s_2 \xrightarrow{a_0} (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^{\omega} \in \mathsf{DFW}(3)$



Window Objectives: prefix independence

- Window objectives at the limit
- Fixed Window objective: $FW(\lambda) \equiv \Diamond DFW(\lambda) \equiv \Diamond \Box GW(\lambda)$
- Bounded Window objective: $BW \equiv \exists \lambda > 0$, $FW(\lambda)$

$$\rho = (s_2 \xrightarrow{a_0})^+ (s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1})^\omega \in \mathsf{FW}(3) \cap \mathsf{BW}$$



Objectives	Prefix independent objectives
00000000	0000000

Threshold Probability Problem

Given

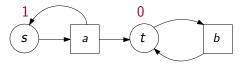
- an **MDP** \mathcal{M} with state space S,
- a maximal window size $\lambda > 0$,
- an initial state $s \in S$,
- a window objective ① ∈ {DFW(λ), FW(λ), BW} for mean-payoff or parity and
- a probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$,

decide if

 $\exists ? \sigma \quad \mathbb{P}^{\sigma}_{\mathcal{M}, s}[\mathbb{O}] \geq \alpha$

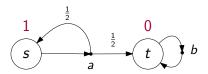
Objectives ○○○○○○●○	Prefix independent objectives

Window Games



 $\exists ?\sigma_{\bigcirc} \forall \sigma_{\square}, \ \rho = \mathsf{Outcome}(s, \sigma_{\bigcirc}, \sigma_{\square}) \in \mathsf{DFW}(\lambda)$

- Existence of a uniform bound λ^* on the maximal window size
- \bigcirc is loosing for all λ since \Box can choose $a \rightarrow s$



$\exists ?\sigma, \mathbb{P}^{\sigma}_{s}[\mathsf{DFW}(\lambda)] \geq \alpha$

- no uniform bound on the maximal window size
- For $\lambda > 1$, $\mathbb{P}_{\mathcal{S}}[\mathsf{DFW}(\lambda)] = 1 \frac{1}{2^{\lambda-1}}$
- $\mathbb{P}_{S}[\mathsf{DFW}(3)] = \Delta(s, a)(t) + \Delta(s, a)(s') \cdot \Delta(s, a)(t) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$ ^{13/26}

Results overview

Objectives

Markov Decision Processes

	parity		mean-payoff	
	complexity	memory	complexity	memory
DFW		polynomial	EXPTIME/PSPACE-h.	pseudo-polynomial
FW	P-c.		P-c.	polynomial
BW		memoryless	NP ∩ coNP	memoryless

Games [CDRR15, BHR16]

	parity		mean-payoff	
	complexity	memory (\mathcal{P}_1)	complexity	memory (\mathcal{P}_1)
DFW		polynomial	P-c.	polynomial
FW	P-c.			
BW]	memoryless	$NP \cap coNP$	memoryless

Outline

- 1. Model
- 2. Objectives
 - 2.1 Classical long-run objectives
 - 2.2 Window objectives
 - 2.3 Direct case
 - 2.4 Prefix independent variants

2.5 Decision problem

3. Fixed case

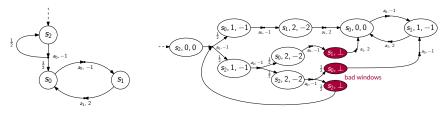
- 3.1 Reductions
- 3.2 Direct fixed window
- 4. Prefix independent objectives
 - 4.1 The case of end-components
 - 4.2 Fixed and Bounded window

Strategies: memory requirements

- Pure finite memory strategies are sufficient
- Main tools: natural reduction from DFW to safety and FW to co-Büchi

Fixed case

••• unfolding based on the maximal window size λ



- Idea: incorporate weights (resp. priorities) as well as the current number of steps in the state space of the MDP
- Mean-payoff: $S \times \{0, 1, \dots, \lambda\} \times \{-\lambda \cdot W, \dots, 0\}$
- Parity: $S \times \{0, 1, ..., \lambda\} \times \{0, 1, ..., d\}$

Complexity and memory requirements

DFW			
Mean-Payoff	Parity		
Threshold probability problem			
EXPTIME algorithm	• P algorithm		
 Pseudo-polynomial-memory optimal strategies 	 Polynomial-memory optimal strategies 		
• PSPACE-hard [HK15]	• P-hard [Bee80, Imm81]		
 Pseudo-polynomial-memory strategies necessary 	 Polynomial-memory strategies necessary 		

Outline

- 1. Model
- 2. Objectives
 - 2.1 Classical long-run objectives
 - 2.2 Window objectives
 - 2.3 Direct case
 - 2.4 Prefix independent variants

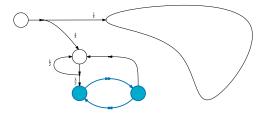
- 2.5 Decision problem
- 3. Fixed case
 - 3.1 Reductions
 - 3.2 Direct fixed window
- 4. Prefix independent objectives
 - 4.1 The case of end-components
 - 4.2 Fixed and Bounded window

	Prefix independent objectives
	000000

End-component

Let \mathcal{M} be an MDP, an *end-component (EC)* is a strongly connected sub-MDP \mathcal{C} of \mathcal{M} formed by states and actions allowing to never leave \mathcal{C}

 For any strategy σ, all runs ρ compatible with σ end up in an EC with probability one

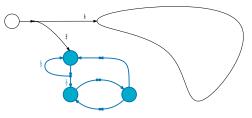


End-component

Let \mathcal{M} be an MDP, an *end-component (EC)* is a strongly connected sub-MDP \mathcal{C} of \mathcal{M} formed by states and actions allowing to never leave \mathcal{C}

- The number of ECs may be exponential in the size of $\ensuremath{\mathcal{M}}$
- An EC may have sub-ECs
- the union of two ECs with non-empty intersection is an EC
- → Maximal end-component (MEC) = ECs that cannot be extended

 \rightsquigarrow MEC(\mathcal{M}) computable in polynomial time



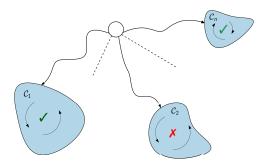
MEC classification and Zero-one Law

- Prefix independence → MECs analysis
- Main result: MEC classification
- strong link between ECs and 2 player games

→ 2 types of MECs: \checkmark and \checkmark Given an objective $\mathbb{O} \in \{FW(\lambda), BW\}$

 $\checkmark \forall s \text{ of } \mathcal{C} \exists \sigma, \quad \mathbb{P}^{\sigma}_{\mathcal{C}_{S}}[\mathbb{O}] = 1$

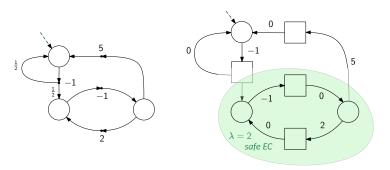
$$\forall s \text{ of } \mathcal{C} \forall \sigma, \quad \mathbb{P}^{\sigma}_{\mathcal{C} s}[\mathbb{O}] = 0$$



Safe EC

An EC C of state space S_C is λ -safe iff $\forall s \in S_C$, $\exists \sigma \forall \rho \in \text{Runs}^{\sigma}(C), \ \rho \in \text{DFW}(\lambda)$

- \rightsquigarrow Boils down to interpreting C as a 2 player game
- \exists ?C, λ -safe EC inside a super-EC C^*
 - \rightarrow compute the winning set \mathcal{W}_{dfw} of the DFW game version of \mathcal{C}^{\star}
 - $\mathcal{W}_{dfw} \neq \emptyset \implies \exists \lambda$ -safe EC \mathcal{C} inside \mathcal{C}^{\star}



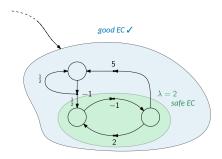
		Prefix independent objectives
0000000	00	000000

Good EC

An EC ${\mathcal C}$ is

- ✓ λ-good for λ > 0 if it contains a sub-EC C' which is λ-safe
- ✓ BW-good if it contains a sub-EC C' which is λ -safe for some $\lambda > 0$

=



 In all EC C, ∃σ^C_{visit} allowing to visit with probability one all states of C

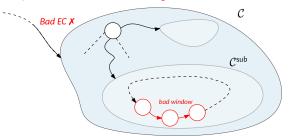
$$\implies \mathbb{P}_{\mathcal{C}}^{\sigma_{\text{visit}}^{\mathcal{C}}}(\Diamond \mathcal{C}_{safe}) = 1$$

• σ_{\checkmark} = combine $\sigma_{\text{visit}}^{\mathcal{C}}$ and σ_{safe}

$$\Rightarrow \mathbb{P}_{\mathcal{C}}^{\sigma_{\mathcal{F}}}[\mathbb{O}] = 1 \text{ for} \\ \mathbb{O} \in \{ \mathsf{FW}(\lambda), \mathsf{BW} \}$$

Bad EC ?

- \blacksquare safe sub-EC inside the 2PG version of C ?
- Fix any finite-memory strategy σ inside C
- The set of states and actions seen infinitely often form sub-ECs \mathcal{C}^{sub} with probability one
- In these sub-ECs C^{sub} , $\exists \rho \notin \text{DFW}(\lambda)$ (otherwise C^{sub} is safe)
- extract a bad prefix ρ^{X} (=bad window) in ρ
- ρ^{X} is repeated infinitely often with probability one in \mathcal{C}^{sub}
- $\forall C^{\text{sub}}, \mathbb{P}^{\sigma}_{C^{\text{sub}}}[\text{DFW}(\lambda)] = 0 \implies \mathbb{P}^{\sigma}_{C}[\mathbb{O}] = 0 \qquad \mathbb{O} \in \{\text{FW}(\lambda), \text{BW}\}$



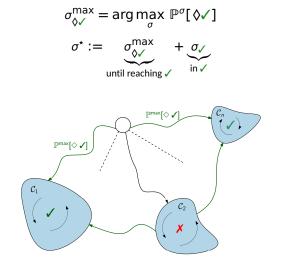
Summary: complexity and strategies

Given $\mathbb{O} \in \{FW(\lambda), BW\}$, 2 types of MECs: \checkmark and \nvDash

✓	$\forall s \text{ of } \mathcal{C} \exists \sigma,$	$\mathbb{P}^{\sigma}_{\mathcal{C},s}[\mathbb{O}] = 1$	\checkmark $\forall s \text{ of } C \forall \sigma,$	$\mathbb{P}^{\sigma}_{\mathcal{C},s}[\mathbb{O}] = 0$
---	---	---	--	---

MEC classification			
Mean-Payoff	Parity		
Fixed window (FW)			
• in P (2PG) • in P (2PG)			
• pure polynomial finite-memory strategy $\sigma_{V} := \sigma_{\text{visit}}^{\mathcal{C}} + \sigma_{\text{safe}}$			
Bounded window (BW)			
• in NP ∩ coNP (2PG)	• in P (2PG)		
• pure memoryless strategy $\sigma_{\checkmark} := \sigma_{\text{visit}}^{\mathcal{C}} + \sigma_{safe}$			

Optimal strategies for FW and BW



Summary Back to the results overview

Markov Decision Processes

	parity		mean-payoff	
	complexity	memory	complexity	memory
DFW	P-c.	polynomial	EXPTIME/PSPACE-h.	pseudo-polynomial
FW			P-c.	polynomial
BW		memoryless	NP ∩ coNP	memoryless

References I

- [Bee80] Catriel Beeri, On the membership problem for functional and multivalued dependencies in relational databases, ACM Trans. Database Syst. 5 (1980), no. 3, 241–259.
- [BGHM14] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege, To reach or not to reach? efficient algorithms for total-payoff games, CoRR abs/1407.5030 (2014).
- [BHR16] Véronique Bruyère, Quentin Hautem, and Mickael Randour, Window parity games: an alternative approach toward parity games with time bounds, Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September 2016. (Domenico Cantone and Giorgio Delzanno, eds.), EPTCS, vol. 226, 2016, pp. 135–148.
- [CDRR15] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin, Looking at mean-payoff and total-payoff through windows, Inf. Comput. 242 (2015), 25–52.

References II

- [CHH09] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn, Finitary winning in omega-regular games, ACM Trans. Comput. Log. 11 (2009), no. 1, 1:1–1:27.
- [HK15] Christoph Haase and Stefan Kiefer, *The odds of staying on budget*, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, eds.), Lecture Notes in Computer Science, vol. 9135, Springer, 2015, pp. 234–246.
- [Imm81] Neil Immerman, Number of quantifiers is better than number of tape cells, J. Comput. Syst. Sci. **22** (1981), no. 3, 384–406.

Extensions

- Expected window size: strategies maintaining the best time bounds possible in their local environment
 - $\min_{\sigma} \mathbb{E}^{\sigma}_{\mathcal{M}}[\lambda] = \min_{\sigma} \sum_{\lambda>0}^{\infty} \lambda \cdot \mathbb{P}^{\sigma}_{\mathcal{M}}[FW(\lambda) \setminus FW(\lambda-1)]$
 - Refine the classification process: identify best window size λ in each MEC by binary search
 - Contract each good MEC and assign λ as entering weight
- Multi window objectives:
 - DFW: extend the unfolding for multiple dimensions
 - MEC classification: games with multiple window objectives
- Tool support: implementation in STORM
 - + DFW, FW and BW objectives for parity and mean-payoff
 - + Efficient unfoldings for DFW
 - + Window games for parity [BHR16] and mean-payoff [CDRR15]
 - + Total payoff games: efficient pseudo-polynomial time algorithm with value iteration [BGHM14]
 - + Weak parity games [CHH09]
 - + Rich MEC classification methods
 - + Strategy synthesis (export in .dot format)