Life is Random, Time is Not

Markov Decision Processes with Window Objectives
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Strategy synthesis

Finding good controllers for systems interacting with an environment

e Game setting: ensure a specified behavior against all possible strategies of
the environment

e Markov Decision Process (MDP) setting:

- environment stochastic
- ensure a specified behavior with a sufficient probability

e Classical objectives reason about infinite runs in their limit

e Window objectives in games [CDRR15, BHR16]: ensure a good behavior in a

parametrized time frame all along the run

~» conservative approximations of classical objectives

Aim of this talk

Introducing window objectives in the stochastic context
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Example

e Parity: asks the minimum priority seen infinitely often to be even
~» canonical way of encoding w-regular properties

~» controller winning
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Model

Example

e Parity: asks the minimum priority seen infinitely often to be even
~» canonical way of encoding w-regular properties

~» controller winning

e Window parity: asks the minimum priority seen within at most A > O time
steps to be even from each position of the infinite run
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~» controller winning
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Example

e Parity: asks the minimum priority seen infinitely often to be even
~» canonical way of encoding w-regular properties

~» controller winning

e Window parity: asks the minimum priority seen within at most A > O time
steps to be even from each position of the infinite run

e Every time S7 is visited, there is a probability > O of not seeing the priority
0 before A steps (%)

~» probability zero
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Outline

2.5 Decision problem

- Model 3. Fixed case
2. Objectives 3.1 Reductions
2.1 Classical long-run objectives 3.2 Direct fixed window
2.2 Window objectives 4. Prefix independent objectives
2.3 Direct case 4.1 The case of end-components

2.4 Prefix independent variants 4.2 Fixed and Bounded window
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An MDP M = (S, A, A) is a tuple such that

e Sisthe set of states of the system

e A isthe set of actions of the
system

e N:SxA—D(S)isthe
probability transition function

e W :A — Zisaweight function

e p:S—{0,1,...,d} isapriority
function (d < |S| + 1 w.l.o.g.)
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a a a
o RUNs: p =50 —> 5] —» S2...57 —> -++ € Runs(M) such that
A(s, ai)(si+1) >0

e Strategy: o chooses at each step an action

- pure finite-memory strategies: choose actions according to a finite
amount of information gathered in the past

- pure memoryless strategies: 0 : S — A
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o Fix a strategy o

e Induce a discrete-time Markov chain: fully stochastic process M?

~ Event: E C Runs?(M)
- P9, [ E]: probability measure of the event E
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Outline

2.5 Decision problem

2. Objectives
2.1 Classical long-run objectives
2.2 Window objectives
2.3 Direct case
2.4 Prefix independent variants
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Long-run objectives

e Parity = {p € Runs(M) | minseinf(p) p(s) = 0 (mod 2)}
e MeanPayoff = {p € Runs(M) | MP(p) > 0}
- MP(o =50 2> 51 5 ...) = liminfaoco = - X7 w(a;)
- Example: Vn € N, ) )
MP((s2 22)"(s0 > 51 %)) = MP((s0 <> 51 <5)*) = 1
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Fixed case

Long-run objectives

e Parity = {p € Runs(M) | minseinf(p) p(s) = 0 (mod 2)}
e MeanPayoff = {p € Runs(M) | MP(p) > 0}

- MP(o =50 2> 51 5 ...) = liminfaoco = - X7 w(a;)
- Example: Vn € N,
a a
MP((s2 2%)"(so =% 51 25)%) = MP((s0 =% 51 %)) = 3
- IPfM 52[MeanPayoff] =1
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame
e Strengthen traditional objectives (correct behaviors at the limit)
~» Make use of the window formalism to reason about behaviors in a given

time bound A > 0.

GW()) = {p € Runs(M) | good behavior in at most A steps from sg }

e Positive sum in at most A = 3 steps?

Window Mean-Payoff

ao, —1 ap, —1 a2 ao, —1 a2
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame

e Strengthen traditional objectives (correct behaviors at the limit)

~» Make use of the window formalism to reason about behaviors in a given

time bound A > 0.
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame
e Strengthen traditional objectives (correct behaviors at the limit)
~> Make use of the window formalism to reason about behaviors in a given
time bound A > 0.
GW(A) = {p € Runs(M) | good behavior in at most A steps from sg }

Window Parity e Minimum priority is even in at most A = 3

steps?
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame
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time bound A > 0.
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame

e Strengthen traditional objectives (correct behaviors at the limit)

~> Make use of the window formalism to reason about behaviors in a given

time bound A > 0.

GW(A) = {p € Runs(M) | good behavior in at most A steps from sg }

Window Parity
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Window Objectives

e Runs that exhibit good behaviors within a configurable time frame
e Strengthen traditional objectives (correct behaviors at the limit)
~> Make use of the window formalism to reason about behaviors in a given
time bound A > 0.
GW(A) = {p € Runs(M) | good behavior in at most A steps from sg }

Window Parity e Minimum priority is even in at most A = 3

steps?

e Window of maximal size A = 3

1 2 0 1 0
o o a1 a0 ap
S OROROSOC O

min priority 0

~» Good window of size A = 3

~ p € GWpar(3)

9/26



Window Objectives: Direct Fixed Window

e Fix awindow size A > 0
e Direct Fixed Window objective: DFW(A) = oGW())

e Good Window of maximal size A sliding along the run

p=522% (502> 51 25)% € DFW(3)
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Window Objectives: Direct Fixed Window

e Fix a window size A > 0

e Direct Fixed Window objective: DFW(A) = oGW())

e Good Window of maximal size A sliding along the run

p=522% (502> 51 25)% € DFW(3)

ag, —1 ag, —1 a2 ag, —1 ap, 2
p =

A

~» Inductive property
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Window Objectives: Direct Fixed Window

e Fix a window size A > 0

e Direct Fixed Window objective: DFW(A) = oGW())

e Good Window of maximal size A sliding along the run
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Objective

Window Objectives: prefix independence

e Window objectives at the limit
e Fixed Window objective: FW(A) = ¢DFW(A) = ¢OGW())
e Bounded Window objective: BW = 3A > 0, FW())

p=(5222)* (50> 515)% € FW(3) N BW
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Objectives

00000000

Threshold Probability Problem

Given
e an MDP M with state space S,
e a maximal window size A > 0,
e an initial state s € S,
e a window objective O € {DFW()), FW()), BW} for
mean-payoff or parity and
e a probability threshold a € [0, 1] N Q,

decide if
3?0 IP;’M,S[@] >
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Window Games
1 0

3?0pVon, p = Outcome(s, o, og) € DFW())

e Existence of a uniform bound A* on the maximal window size

O s loosing for all A since O can choose @ — S

370, PIIDFW(A)] > a

no uniform bound on the maximal window size
For A > 1, Ps[DFW(A)] = 1— 5y

Ps[DFW(3)] = A(s, a)(t) + A(s, a)(s) - A(s, a)(t) =
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Model

Results overview

Markov Decision Processes

parity mean-payoff
complexity | memory complexity ‘ memory
DFW olvnomial EXPTIME/PSPACE-h. pseudo-polynomial
FW P-c. poly P-c. polynomial
BW memoryless NP n coNP memoryless
Games [CDRR15, BHR16]
parity mean-payoff
complexity ‘ memory (P1) complexity memory (P1)
DFW olynomial P-c olynomial
FW P-c. poly : poly
BW memoryless NP n coNP memoryless
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Fixed case

Outline

3. Fixed case
3.1 Reductions

3.2 Direct fixed window
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Fixed case

Strategies: memory requirements

e Pure finite memory strategies are sufficient
e Main tools: natural reduction from DFW to safety and FW to co-Biichi

~» unfolding based on the maximal window size A

e Idea: incorporate weights (resp. priorities) as well as the current number

of steps in the state space of the MDP
e Mean-payoff: Sx {0,1,..., A} x {—A-W,...,0}
e Parity: Sx {0,1,...,A} x {0,1,...,d}
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Fixed case refix independent objectives

Complexity and memory requirements

DFW
Mean-Payoff Parity
Threshold probability problem
e EXPTIME algorithm e P algorithm
e Pseudo-polynomial-memory e Polynomial-memory optimal
optimal strategies strategies
e PSPACE-hard [HK15] e P-hard [Bee80, Imm81]
e Pseudo-polynomial-memory e Polynomial-memory strategies
strategies necessary necessary
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independent objectives

Outline

4. Prefix independent objectives
4.1 The case of end-components
4.2 Fixed and Bounded window
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Prefix independent objectives

0000000

End-component

Let M be an MDP, an end-component (EC) is a strongly connected sub-MDP C of
M formed by states and actions allowing to never leave C

e For any strategy o, all runs p compatible with g end up in an EC with
probability one
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Prefix independent objectives

0000000

End-component

Let M be an MDP, an end-component (EC) is a strongly connected sub-MDP C of
M formed by states and actions allowing to never leave C

e The number of ECs may be exponential in the size of M
e An EC may have sub-ECs
e the union of two ECs with non-empty intersection is an EC
—> Maximal end-component (MEC) = ECs that cannot be extended

~» MEC(M) computable in polynomial time
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Prefix independent objectives

0@00000

MEC classification and Zero-one Law

e Prefix independence ~» MECs ~» 2 types of MECs: v and X

analysis Given an objective O € {FW(A), BW}
e Main result: MEC classification v/ VsofC3o, IP’Z s[CIZD] =1
e strong link between ECs and 2 X VsofCVo, P7 s[@] =0

player games
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Fixed case Prefix independent objectives

00@0000

Safe EC

An EC C of state space S¢ is A-safe iff Vs € S¢,
do Vp € Runs?(C), p € DFW())

~» Boils down to interpreting C as a 2 player game

e 37C, A-safe EC inside a super-EC C*
— compute the winning set Wysw of the DFW game version of C*
- Wafw #@ => 3 A-safe EC C inside C*

A=2
safe EC
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Prefix independent objectives

000@000

Good EC

AnECCiis
v A-good for A > 0 if it contains a sub-EC C” which is A-safe
v BW-good if it contains a sub-EC C’ which is A-safe for some A > 0

good EC v/ e InallECC, HU\C/isit allowing to visit
with probability one all states of C
o€
= |]:D(ZVISIt(Ocsafe) =1
A=2 e 0, =combine OSisit
= PZ[0]=1for
0 e {FW(2), BW}

and Osafe

safe EC
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Model jecti i se Prefix independent objectives

[o]e]e]e] Jele)

Bad EC?

o 7 safe sub-EC inside the 2PG version of C ?
e Fix any finite-memory strategy o inside C

o The set of states and actions seen infinitely often form sub-ECs CsUb with
probability one

o In these sub-ECs CSUP, 3p & DFW(A) (otherwise CSUP is safe)

e extract a bad prefix p* (=bad window) in p

o p* is repeated infinitely often with probability one in csub

o VCSUP, P7., [DFW(A)] =0 = P9[0] =0 0 € {FW(»), BW}

‘( : bad window 52 ’
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Prefix independent objectives
0000000

Fixed case

Summary: complexity and strategies
Given O € {FW()), BW}, 2 types of MECs: v and X

v/ VsofC3o, Pg,s[ﬂ)]:l X VsofCVo, Pg,s[®]=0
Mean-Payoff Parity
Fixed window (FW)
e inP (2PG) e inP (2PG)

e pure polynomial finite-memory strategy o/ := GSisit + Osafe

Bounded window (BW)

e in NP n coNP (2PG) e in P (2PG)

e pure memoryless strategy o,/ := OSisit + Osafe
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Preﬁx |ndependent objectives

Optimal strategies for FW and BW

max —
Oy, =argmax PV ]

until reaching v/ inv/

]Pmax[o /]

Hmmax[o /]
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Summary
Back to the results overview

Markov Decision Processes

parity mean-payoff
complexity \ memory complexity \ memory
DFW . EXPTIME/PSPACE-h. pseudo-polynomial
polynomial -
FW P-c. P-c. polynomial
BW memoryless NP n coNP memoryless

26/26



References |

[Bee80]

[BGHM14]

[BHR16]

[CDRR15]

Catriel Beeri, On the membership problem for functional and
multivalued dependencies in relational databases, ACM Trans.
Database Syst. 5 (1980), no. 3, 241-259.

Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin
Monmege, To reach or not to reach? efficient algorithms for
total-payoff games, CoRR abs/1407.5030 (2014).

Véronique Bruyére, Quentin Hautem, and Mickael Randour, Window
parity games: an alternative approach toward parity games with time
bounds, Proceedings of the Seventh International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2016,
Catania, Italy, 14-16 September 2016. (Domenico Cantone and Giorgio
Delzanno, eds.), EPTCS, vol. 226, 2016, pp. 135-148.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and
Jean-Francois Raskin, Looking at mean-payoff and total-payoff through
windows, Inf. Comput. 242 (2015), 25-52.



References Il

[CHHO9] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn,
Finitary winning in omega-regular games, ACM Trans. Comput. Log. 11
(2009), no. 1, 1:1-1:27.

[HK15] Christoph Haase and Stefan Kiefer, The odds of staying on budget,
Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part Il (Magnus M. Halldérsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, eds.), Lecture Notes in Computer Science, vol.
9135, Springer, 2015, pp. 234-246.

[Imm81]  Neil Immerman, Number of quantifiers is better than number of tape
cells, J. Comput. Syst. Sci. 22 (1981), no. 3, 384-406.



Extensions

° : strategies maintaining the best time bounds possible
in their local environment

- ming [Ej\/[[)\] = ming Z;’ZO)\ . [FD‘;\A[FW()\) \FW(1x—1)]

- Refine the classification process: identify best window size A in each MEC by
binary search

- Contract each good MEC and assign ) as entering weight

- DFW: extend the unfolding for multiple dimensions
- MEC classification: games with multiple window objectives

° implementation in STORM

DFW, FW and BW objectives for parity and mean-payoff

Efficient unfoldings for DFW

Window games for parity [BHR16] and mean-payoff [CDRR15]

Total payoff games: efficient pseudo-polynomial time algorithm with value
iteration [BGHM14]

Weak parity games [CHHO9]

Rich MEC classification methods

+ Strategy synthesis (export in .dot format)

++ + +

+ +
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